Acute and Chronic Osteomyelitis Including Septic Arthritis

Prof Oluwadiya KS FMCS (Orthop) Consultant Orthopaedic Surgeon / Professor Ekiti State University, Ado-Ekiti www.oluwadiya.com

What is osteomyelitis?

 Osteomyelitis is pyogenic infection of bones

Classification

- Attempts to classify osteomyelitis have been based on
 - i. the duration and type of symptoms
 - ii. the mechanism of infection
 - iii. the type of host response to the infection.

Classification based on duration

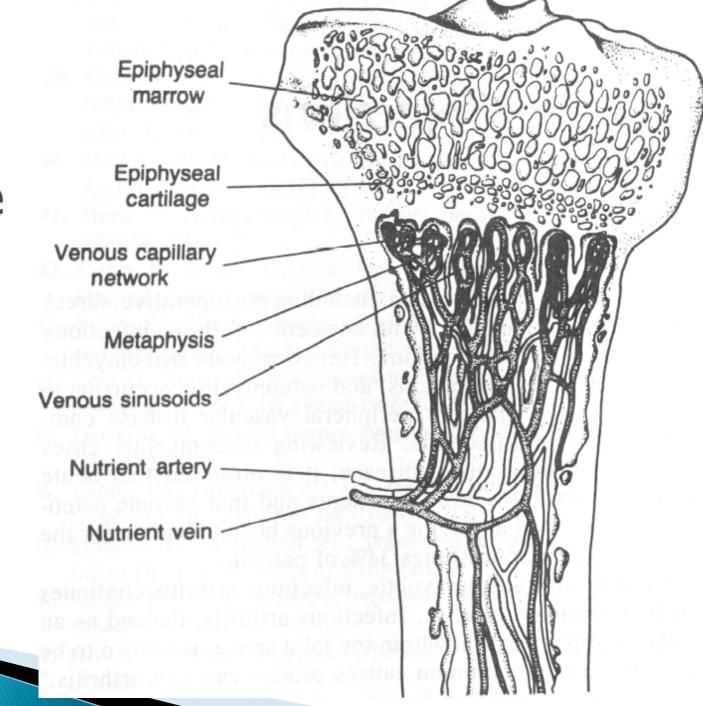
Based on the duration and type of symptoms, osteomyelitis may be

- acute
- subacute or
- chronic

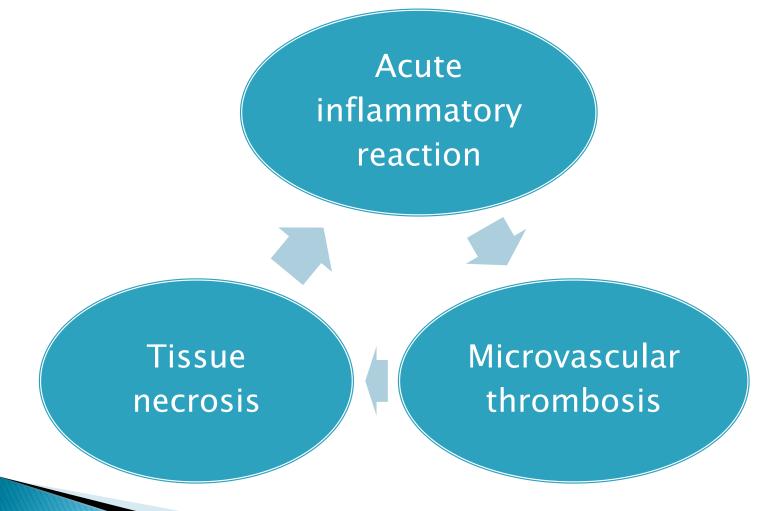
Classification according to mechanism

- Osteomyelitis may be
 - 1. hematogenous.
 - 2. exogenous
- The hematogenous form may result from known or unknown bacteremia.
- The exogenous form is an infection caused by trauma, surgery (iatrogenic), or a contiguous infection.

Routes of infections

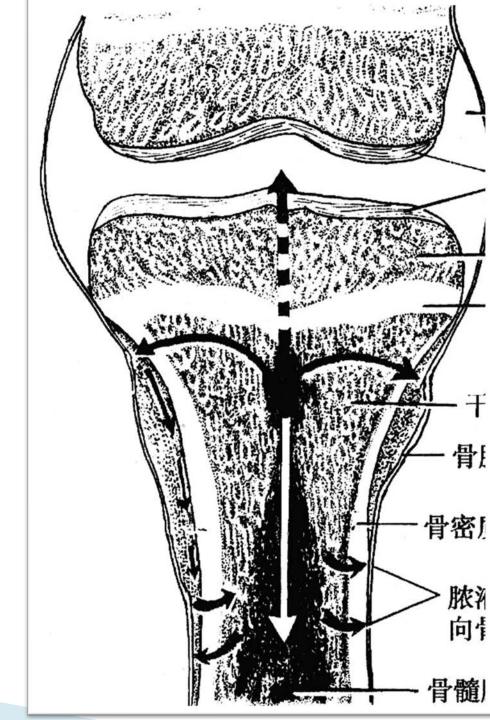

- One of three paths:
 - 1. Haematogenous...most common route by far
 - Inoculation e.g. through open fractures. Tends NOT to present as acute osteomyelitis
 - 3. Spread from contiguous infections

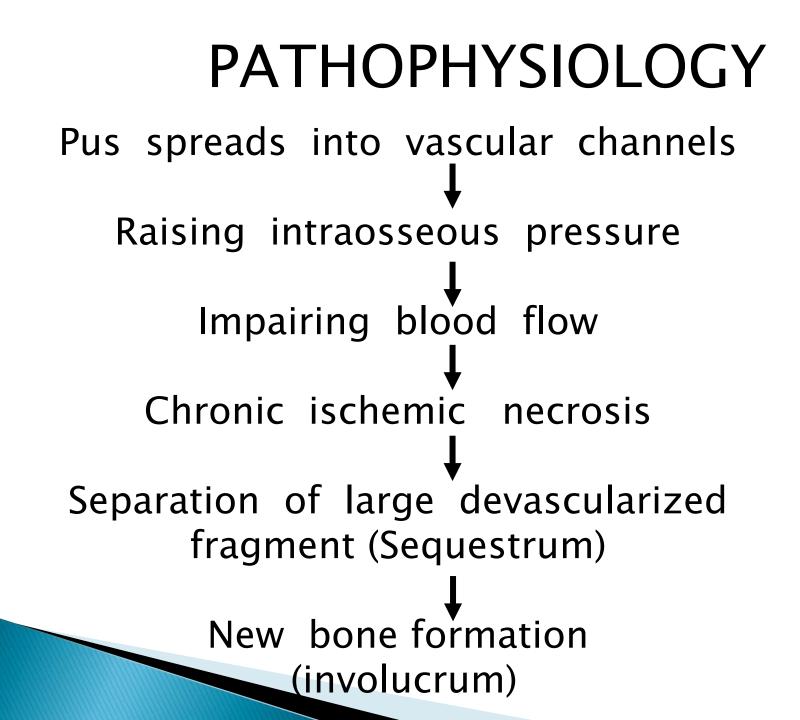
Acute hematogenous osteomyelitis


- occurs in children < 15 years of age although adults can have this disease
- occurs in the metaphysis of the long bones
- the capillaries of the nutrient arteries supplying bone make sharp hairpin turns at the metaphysis before entering sinusoidal veins connected with the venous network
- Blood flow becomes considerably slower and more turbulent

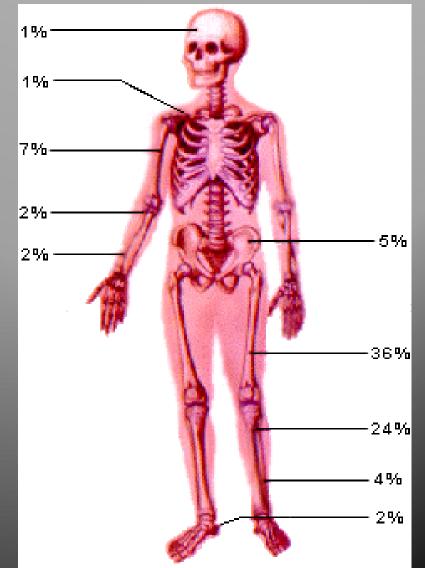
Parts of a long Bone




Infection starts in the metaphyseal sinusoidal veins deep in the medulla Then spreads laterally through the cortex into the subperiosteal region


- Sequestrum forms as a result of bone necrosis. The infection has become chronic at this stage.
- Because periosteum is resistant to infection, pus collects under it.
- This lifts the periosteum up from the bone causing more bony necrosis and subperiosteal extension of the pus.

Spread of osteomyelitis



- Eventually the abscess bursts through the periosteum into the surrounding soft tissue.
- Finally, it may burst through the skin to the surface and form a chronic sinus becoming a persistent sinus tract
- The opening through which pus bursts through the periosteum is called the cloacae.
- New bone (Involucrum) is formed whenever periosteum is separated from the underlying bone

Common sites of occurrence

- Children primarily in the long bones (femur, tibia, fibula, humerus)
- Adults (50–60s) primarily vertebrae
- Neonates have multiple bone infectious sites and easily involves the adjacent joint

Organisms of osteomyelitis

- The most common organisms in children < 4 years of age is *S. aureus, H. influenza, S. pyrogenes.*
- Common organisms in children > 4 years include S. aureus, S. pyrogenes
- Common organisms in adults include S. aureus, Enterococcus, E. coli, P. aeruginosa depending on the site of the infection.

HEMATOGENOUS OSTEOMYELITIS

Some associated conditions:

- Sickle cell disease
- Injection drug users (IDUs)
- Hemodialysis
- HIV/AIDS
- Immunosuppression
- Prosthetic orthopedic device

Haematogenous Osteomyelitis: Clinical features

- History of antecedent trauma in about 30%
- Pain.....most common
- Fever
- Reluctance to use limb
- ± Swelling

Clinical features

Occasionally can present as severe toxaemic variant

- severe acute illness appear
- irritable and restless
- high fever, chill
- rapid pulse, nausea, vomiting etc

local signs

- Warmth
- Erythema
- Tenderness
- ± Swelling
- E Reduced and tender joint motion

HEMATOGENOUS OSTEOMYELITIS Laboratory Investigations:

- WBC :May be elevated, sometimes to very high levels
- C-Reactive Protein (CRP)
- Erythrocyte Sedimentation Rate
- (These two are usually elevated at presentation, fall with successful therapy)
- Blood culture (Positive in about 50% of cases)

HEMATOGENOUS OSTEOMYELITIS Plain X-Ray

- Initially Normal
- Between 10-14 days, there are
 Soft tissue swelling
 Periosteal elevation
 Osteolytic change
 Then after about 21 days
 Sclerotic changes begin to appear

HEMATOGENOUS OSTEOMYELITIS Investigations

- CT Scan:
 - Useful in evaluation
 - Provides excellent images of bone cortex
 - Is used for biopsy localization

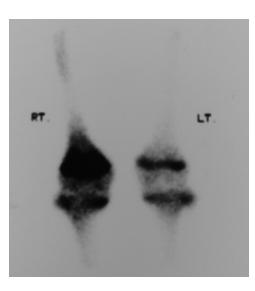
HEMATOGENOUS OSTEOMYELITIS Investigations

Ultrasonography:

- Simple & inexpensive
- Demonstrates anomaly 1 2 days after onset
- Shows soft tissue abscess, Fluid collection, & Periosteal elevation
- It allows for aspiration
- BUT It does not allow for evaluation of bone cortex.

Investigations

 Needle Aspiration or Open biopsy:
 From: Soft tissue collection Subperiosteal abscess Intraosseous lesions


For: MCS and Cytology or histology

Investigations

Radionuclide bone scan e.g., Technetium 99m:

- Positive as early as 24 h after onset of symptoms.
- ► False positive → Tumors, AVN, Arthritis, Cellulitis, Abscesses

HEMATOGENOUS OSTEOMYELITIS Investigations

MRI:

- Early detection
- Superior to plain X-ray, CT Scan & radionuclide bone scan in selected anatomic locations.

Treatment

- 1. Antibiotics therapy
- 2. Surgical treatment
- 3. Immobilization

Treatment of Acute Osteomyelitis

- Initial treatment should be aggressive.
- Inadequate therapy leads to chronic osteomyelitis

Treatment

Antibiotic use:

- Parenteral until 24-48 hours after temperature has come down
- Continued orally for a combined total of 5-6 weeks or until ESR has normalised
- High doses
- Choice initially empiric
- Changed appropriately after M/C/S result is obtained

Treatment of Acute Osteomyelitis Surgery

- Indications for surgery
 - Diagnostic
 - Joint (especially the hip) involvement
 - Poor or no response to IV antibiotic therapy
 - Sequestration

Types of surgery

- Incision and drainage
- Incision, drainage and bone drilling

Immobilization

- Rests the limb
- Relieves pain
- May prevent pathologic fractures

Monitoring response to treatment

- Symptoms & Signs (Improvement)
- ESR & CRP (Reduces)
- Radiography (Resolution)

CHRONIC OSTEOMYELITIS

- Is present if any of sequestrum, involucrum or cloacae is seen on x-ray
- Commonly follows neglected or inadequately treated acute osteomyelitis
- The usual sequelae of direct inoculation of organisms
- Very difficult to treat; should therefore be avoided at all cost

CHRONIC OSTEOMYELITIS Clinical features

May be symptomless especially when inactive, Following findings may be found at this stage:

- History: Recurrent discharging sinuses, limb pain, limping etc
- Skin changes: healed sinus scars, scarred, poor nourished skin.
- Muscles-wasting and contracture
- Joint-stiffness
- Bone-thick, sclerotic

CHRONIC OSTEOMYELITIS Clinical features

- At intervals, flare-up occurs with abscess formation.
- The abscess drains through sinuses in the skin which may be multiple
- Aching pain that is usually worse at night.
- Locally there may be some heat, swelling, redness, tenderness and edema especially in acute exacerbations
- Multiple heal scars of healed sinuses

CHRONIC OSTEOMYELITIS X-ray findingd

- Inner sequestrum
- This gives the classical bone-in-Bone appearance Surrounding involucrum
- (The involucrum is usually thickened, irregular and sclerotic while the sequestrum are sometimes indistinct and may be missed on x-rays)
- Cloaca
- Soft tissue swelling or atrophy

CHRONIC OSTEOMYELITIS Early X-Ray Pictures

CHRONIC OSTEOMYELITIS Late X-Ray Pictures

CHRONIC OSTEOMYELITIS Late X-Ray Pictures

Sequestrum: Note the sclerosis.

Involucrum: This is the newly formed sheath of bone enclosing the sequestrum

The two together, give the **bone-in-bone** appearance of osteomyelitis

CHRONIC OSTEOMYELITIS Treatment

- It is very difficult to provide a permanent cure for chronic osteomyelitis, most antibiotics fail to penetrate the barrier of fibrous tissue plus bone sclerosis.
- Chronic osteomyelitis presents quite different problem from the acute form.
- The primary objective is the surgical removal of all dead and poor vascularized tissues (Sequestrectomy).

CHRONIC OSTEOMYELITIS Sequestrectomy

CHRONIC OSTEOMYELITIS Treatment

- Secondary surgical techniques such as flaps, bone grafting, skin grafting may be necessary
- Post operatively, local antibiotic therapy e.g., Gentamicin beads, continuous antibiotic infusion might be necessary

Sequelae of a Neglected Chronic osteomyelitis

Bone Loss

Subacute Osteomyelitis (Brodie's abscess)

SEPTIC ARTHRITIS

- Most common organism :- Staphylococcus aureus.
- Most common joints: The hips and knees
- Routes of infection:
 - Hematogenous spread from an infective focus
 - Spread from an adjacent focus e.g., osteomyelitis
 - Direct inoculation

Septic Arthritis: Clinical Features

- History: Irritability, Pain, fever, will not use joint
- Exam: red, warm, tender, swollen joint with absent movement and kept in position of ease

Septic Arthritis: Investigation

- Elevated ESR/CRP
- Elevated WBC (not always reliable)
- Blood Culture (+ve in 50%)
- ▶ X-ray
- Ultrasound
- Joint Aspirate for M/C/S and Synovial analysis

Synovial Fluid Analysis

DISEASE	LEUKOCYTES*	POLYMORPHS* (%)
Normal	<200	<25
Traumatic	< 5000 with many erythrocytes	<25
Toxic synovitis	5000-15,000	<25
Acute rheumatic fever	10,000-15,000	50
Juvenile rheu- matoid arthritis	15.000-80,000	75
Septic arthritis	>80,000	>75

SEPTIC ARTHRITIS 3 Essential principles of management

- > The joint must be adequately **drained**,
- Antibiotics must be given to diminish the systemic effects of sepsis
- The joint must be rested in a stable position. (Prompt, adequate evacuation of purulent joint fluid appears to be crucial both for preservation of articular cartilage and for resolution of the infection)

SEPTIC ARTHRITIS Modes of drainage

- Repeated aspirations: when diagnosis are made early, and joint is superficial e.g., knee
- Arthroscopic arthrotomy
- Open arthrotomy: In late cases and certain deep joints e.g. The hip or when aspira fails.

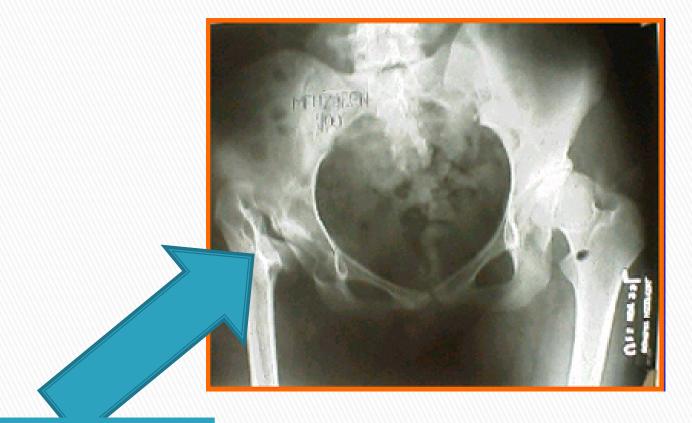
SEPTIC ARTHRITIS: Antibiotics Treatment

- Initial antibiotic treatment is empirically based on the patient's age and the risk factors.
- Empirical antibiotic therapy should be used until culture and sensitivity results are available.
- Should be continued for 4 to 6 weeks.

SEPTIC ARTHRITIS Immobilization

Immobilization in position of function
 Back slabs, slings and tractions
 Removed when infection subsides
 Followed by rehabilitation

SEPTIC ARTHRITIS Methods of Immobilization

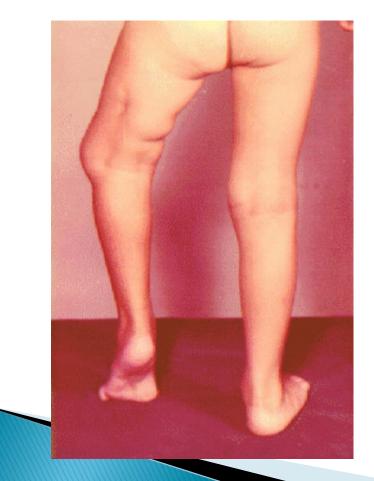


Gallows' Splint for the Hips in Children < 2 yrs

The shoulder

Sequelae of neglected septic arthritis

Ankylosis


Sequelae of neglected septic arthritis

- Shortening and Limping
- Joint stiffness
- Muscle wasting

Sequelae of neglected septic arthritis

Ankylosis and contracture

Questions?

