Effective Use of Advanced Statistical Methods in Research I

KEHINDE OLUWADIYA

Professor of Surgery (Orthopaedics)
Ekiti State University, Ado-Ekiti
CEO

POSK Educational Consult

www.oluwadiya.com

Preamble

This is the first of a 3-part lecture on the use of advanced statistical methods in medical research

Objectives

PART I

- 1. Why do you need to know statistics?
- 2. What you need for effective use of statistics
- 3. Data transformation

PART II

- 1. Limitations of P-value
- 2. Statistics for comparing 2 or more groups with continuous data
- 3. Regressions and Correlation

PART III

- 1. Risk Ratios and Odds Ratios
- 2. Survival Analysis
- 3. Sensitivity, Specificity and ROC Curves
- 4. Finding the right test for specific data

Objective of the lecture series

■ To provide a 3-hour overview (including

demonstrations) of the important practical

information that a clinical investigator

needs to know about biostatistics to be

successful.

Introduction

WHY DO YOU NEED TO KNOW STATISTICS?

BECAUSE STATISTICS, WHEN MISUSED, CAN BE DANGEROUS

Statistics can be made to lie!

"THERE ARE THREE KINDS OF LIES:

LIES, DAMN LIES AND

STATISTICS"

Benjamin Disraeli

"There are lies, damn lies, and statistics. We're looking for someone who can make all three of these work for us."

Statistics can contain errors!

There is an increasing number of publications on the flaws and errors in much of published medical literature:

- The scandal of poor medical research- DG Altman, 1994
- Statistical errors in medical research, a chronic disease?- J Young, 2007
- Improved reporting of statistical design and analysis: guidelines, education, and editorial policies. Mazumdar M et al 2010
- "Why most published research findings are false"- John Iaonnidis

And many more...

Medical Lies?

In 2005, PLoS Medicine published an article by John loannidis that has been downloaded over 100,000 times and has won the author many prizes and accolades...

The title of the article?

Why most published research findings are false.... John P. A. Ioannidis

....Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true.

Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias.....

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is creater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance Simulations show that for most study designs and settings, it is more likely for a research claim to be false th Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this essay, I discuss the implications of these problems for the conduct and interpretation of research.

Medical lies?

ORIGINAL CONTRIBUTION

218 JAMA, 24Y 13, 2005-Vol 264, No. 2 (Reprined)

©2005 American Medical Association. All rights reserved.

Contradicted and Initially Stronger Effects in Highly Cited Clinical Research

John P. A. Ioannidis, MD

Context Controversy and uncertainty ensue when the results of clinical research on the effectiveness of interventions are subsequently contradicted. Controversies are most promisent when bleh-isopast research is involved.

John P. A. Ioannidis

His Methodology

- Examined all original clinical-research studies that were published in three major non-specialty journals (*New England Journal of Medicine, JAMA*, and the *Lancet*) and "high-impact-factor" specialty journals between 1990 and 2003 that were cited more than 1000 times in the literature.
- He compared the results of these highly cited studies with those from subsequent studies of comparable or larger sample sizes and similar or better designs.

His Findings

Hall of shame: % Contradicted by later studies:

- 80% of non-randomized studies were wrong
- 25% of supposedly gold-standard! randomized trials were contradicted!
- 10% of large randomized trials were contradicted!

Excerpts from DG Altman.....

- "We need less research, better research, and research done for the right reasons"
- "We need not be experts in statistics, but we should understand the principles of sound methods of research. If we can also analyze our own data, so much the better. Amazingly, it is widely considered acceptable for (medical) researchers to be ignorant of statistics. Many are not ashamed (and some seem proud) to admit that they don't know anything about statistics"

The scandal of poor medical research- DG Altman, 1994

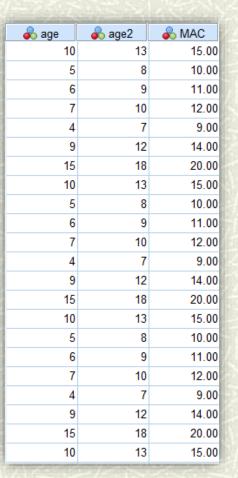
As scientists and medical researchers, it is our sacred duty to uphold the standards of research in our specialties

To do this, we should empower ourselves, understand the underlying principles, and be ready to stand by them...

Functions of statistics....1

1. To reduce data. This is done:

- I. Graphically by compiling charts, tables, graphs, histograms, frequency polygons etc.,
- II. Univariate analysis (mean, median, standard deviations, range etc.)
- **♯** Aim is to determine trends and summaries of variables.


Simply speaking....

Statistics is a tool for converting *DATA* into *INFORMATION*

Data into Information

Data

Information

Frequencies

Statistics

		age	age2	MAC
N	Valid	22	22	22
	Missing	6	6	6
Mean		8.09	11.09	13.0909
Median		7.00	10.00	12.0000
Mode		10	13	15.00
Std. Deviation		3.490	3.490	3.49025

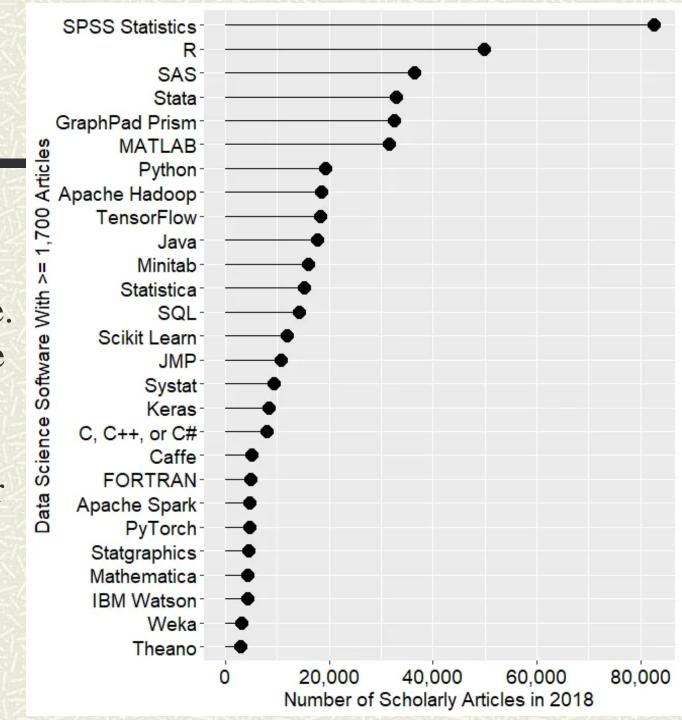
Functions of statistics....2

- 2. To provide methods of applying tests of significance.
 - Tests of significance are used to separate real differences from those due to chance. In general, the level of significance is arbitrarily set at 5% (p = probability = 0.05).

Functions of statistics....3

3. To provide a sound basis for experimental design

- **■**Experiments must be carefully designed because a good design may mean the difference between a sound, scientific research and worthless data which yield little or no information.
- **■**In many instances, more information are obtained with the same amount of work if the researcher has a knowledge of statistical methods and plans his experiment accordingly.


To effectively use statistics: 1.YOU NEED THE RIGHT TOOLS

Install a powerful, yet easy to use, statistical software package on your computer.

- #You don't need to do the math
- ★ Many comes with explanation of their outputs
- There are numerous help sources to get you going
- **■** I recommend SPSS.

Why SPSS?

- By far, SPSS is the most popular package.
 It picely belonce
- It nicely balance between power and ease-of-use
- It is much easier to use than R, SAS or Stata

Bottom line

■ Get to know whatever software you are using.

■ Learn to use the correct statistics correctly!

■ Learn to interpret the outputs correctly

To effectively use statistics:

2.YOU NEED DATA THAT WAS COLLECTED CORRECTLY

CORRECTLY COLLECTED DATA

While this topic has been covered extensively by some of the previous speakers, I just want to add the following:

Surveys can be conducted using smartphones & Tablets

And they have many advantages over traditional methods of surveys

- # They're portable
- ■ Come with an on-board GPS receiver (helps to guide against fudging)
- **♯** Have on-board cameras
- Automatically record time taken to enter data (helps to guide against fudging)
- ★ No need to enter data separately after collection
- **■** Can connect to wireless networks
- # Access to the internet
- # Email is available
- **♯** There's an app for it!

Electronic data collection using smartphones

Different (Free) Apps:

- Open Data Kit (ODK) (https://www.google.com.au/intl/en/earth/outreach/tutorials/odk_gettingstarted.html)
- **■** Epicollect (http://www.epicollect.net/instructions/)
- Epicollect+ (http://www.epicollect.net/plus_Instructions/default.html)

What about online survey tools?

- **★** All the advantages of questionnaire plus the convenience of online tools
- # Free versions available e.g., Google Forms, Survey Monkey
- Reach and scalability is much more than traditional questionnaire
- # Cheap
- **■** Less time consuming for the researcher
- **♯** More accurate data entering
- # Quicker
- # Ensures better anonymity and therefore improves confidentiality

Why Transform Data?

- **★** The assumptions of most parametric methods include:
 - Homogeneity of variance (Homoscedasticity)
 - Normality
 - Linearity
- Data transformation is used to make your data conform to the assumptions of the statistical methods

Normal vs Skewed Data

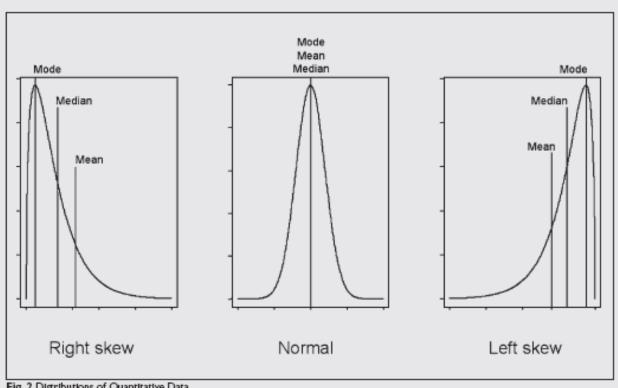
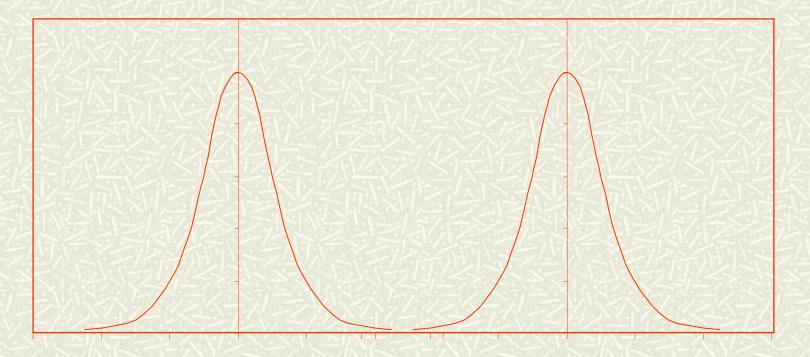
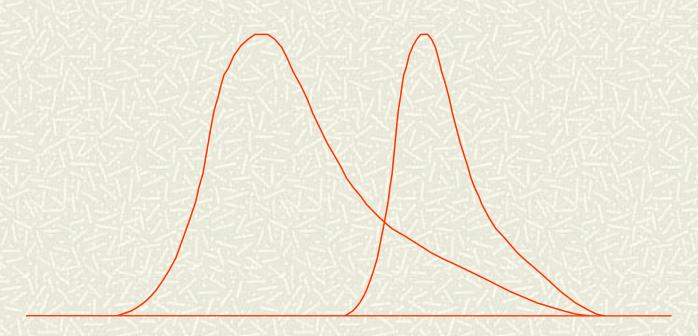



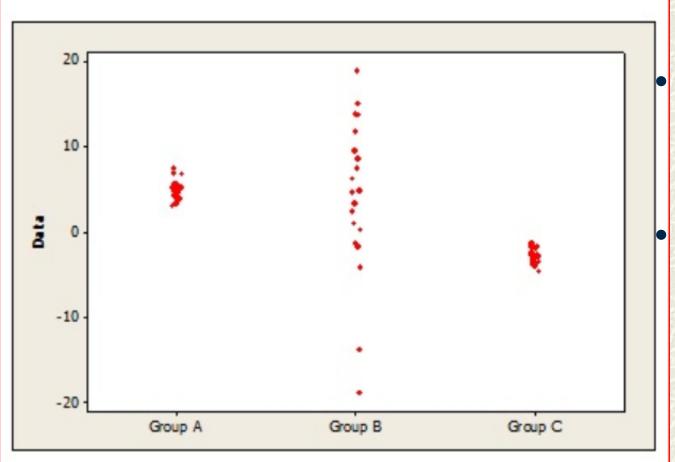
Fig. 2 Distributions of Quantitative Data.

Homoscedasticity


Homo: Same Scedastiscity: to scatter

This two groups are both normal and have equal scatter (variance)

Won't it be nice if we would make the previous data look this way?


Heteroscedasticity

The two groups have unequal variance

The **Barlett test** or the **Levene test** are used to determine if the variances of groups defer

More on scatter

Group A and C exhibits homoscedasticity

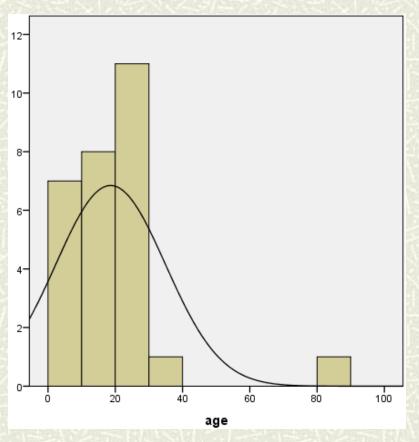
Group A and B exhibit heteroscedasticity

Determining normality of data

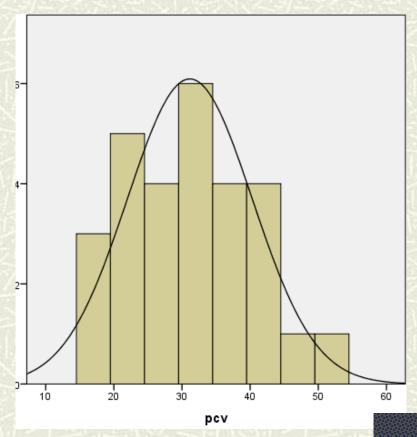
Graphical method

- Histograms and Normality plots
- Boxplots
- Normal Q-Q plots and detrended Q-Q plots
- # Statistical method
 - Skewness and kurtosis
 - Smolgrov-Smirnov statistics

In SPSS, use the EXPLORE procedure to obtain these parameters

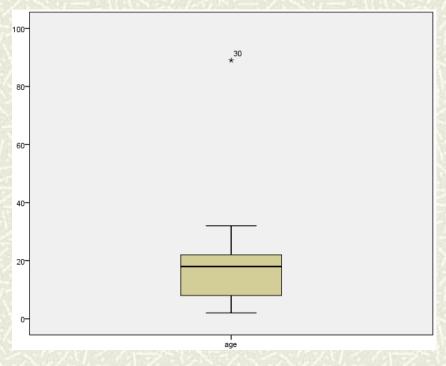

Determining normality of data

Which of the two variables has a normal distribution?

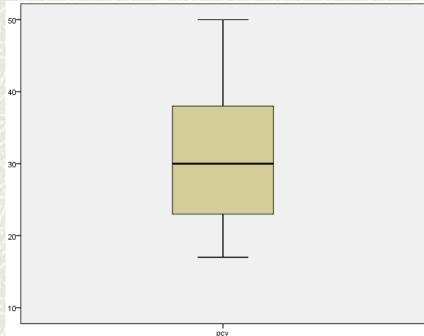

AGE	PCV
4	35
5	34
6	34
6	30
10	25
12	43
5	34
4	38
3	43
5	30
17	29
18	40
18	25
20	21
20	99
21	26
22	50
22	32
22	17
22	10
26	40
26	20
20	47
29	21
23	21
0	10
AGE 4 5 6 6 10 12 5 4 3 2 17 18 20 21 22 22 22 26 29 29 31 11 12 89	PCV 35 34 30 25 43 38 43 43 43 43 43 43 43 43 43 43 43 43 43
11	25
12	00
12	99
89	23

Determining normality of data: Normality Curve

Age



PCV



Determining normality of data: Box plot

AGE

PCV

Determining normality of data: The Explore procedure

AGE

PCV

Descriptives					
			Statistic	Std. Error	
age	Mean		18.81	3.315	
	95% Confidence Interval	Lower Bound	11.98		
	for Mean	Upper Bound	25.63		
	5% Trimmed Mean		16.56		
	Median		18.00		
	Variance		285.682		
	Std. Deviation		16.902		
	Minimum		2		
	Maximum		89		
Range Interquartile Range	Range		87		
	Interquartile Range		16		
	Skewness		2.946	.456	
	Kurtosis		11.971	.887	

Descriptives

pcv	Mean		30.92	1.861
1	95% Confidence Interval	Lower Bound	27.09	
	for Mean	Upper Bound	34.76	
1	5% Trimmed Mean		30.65	
1	Median		30.00	
1	Variance		90.074	
1	Std. Deviation		9.491	
	Minimum		17	
	Maximum		50	
	Range		33	
	Interquartile Range		16	
	Skewness		.313	.456
	Kurtosis		989	.887

Determining normality of data: The K-S procedure

Tests of Normality

	Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.
age	.196	26	.011	.705	26	.000
pcv	.121	26	.200*	.952	26	.260

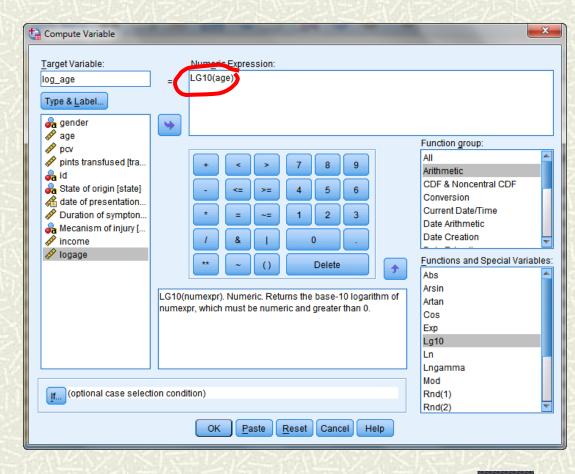
Decision Time

- We should always check the assumptions that data follow a normal distribution with uniform variance (homoskedasticity):
 - i. If the data meet the assumptions, we can analyze the raw data as described.
 - ii. If the assumptions are not met, we have three possible strategies:

What if the variable is not normally distributed?

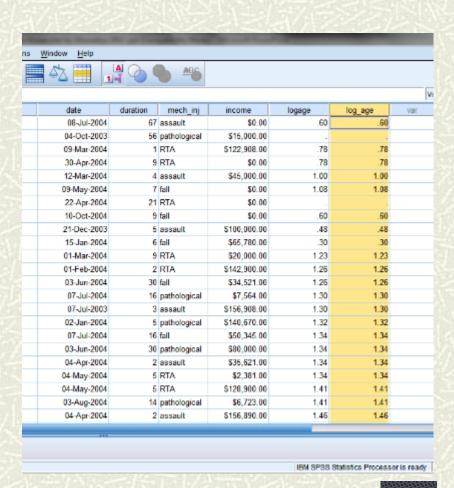
- 1. We can use a method which does not require these assumptions, such as a rank-based (non-parametric) method.
- 2. Thanks to the Central Limit Theory, if you have a large enough sample size (Taken to be at least 30), you may go ahead, and use a parametric technic even if your data is skewed!
- 3. We can transform the data mathematically to make them fit the assumptions more closely before analysis.

Methods of data transformation

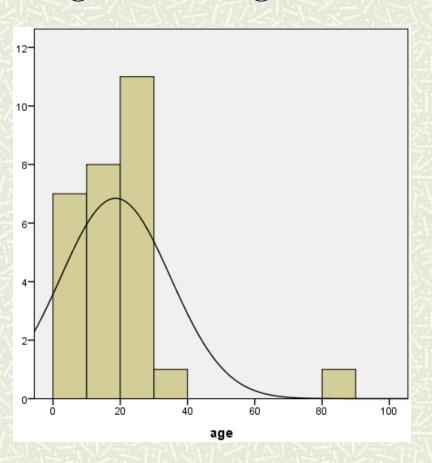

In healthcare research, there are three commonly used transformations for quantitative data:

- 1. Logarithmic transformation,
- 2. Square root transformation
- 3. Inverse (reciprocal) transformation.

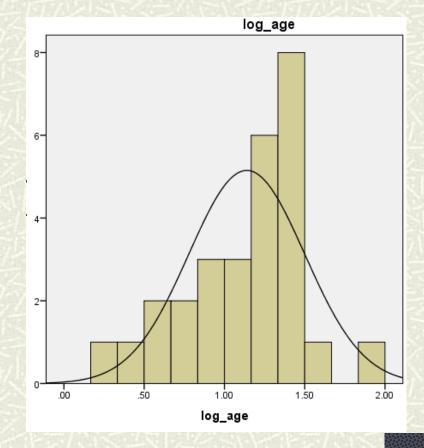
Normalizing data in SPSS


- We know that Age is not normally distributed
- **■** We are going to normalize Age:
- **■** Log transformation: use SPSS Compute Sub menu:

Transform Compute


Normalizing data in SPSS

■ The transformed variable (log_age) which we asked SPSS to create has been created



Normalize Age: Result

Original Data (Age)

Transformed data

Normalize PCV: Result

Log_Age

logage	Mean		1.1388	.06831
	95% Confidence Interval for Mean	Lower Bound	.9986	
		Upper Bound	1.2789	
	5% Trimmed Mean		1.1445	
	Median		1.2553	
	Variance		.131	
	Std. Deviation		.36146	
	Minimum		.30	
	Maximum		1.95	
	Range		1.65	
	Interquartile Range	.42		
	Skewness		470	.441
	Kurtosis		.379	.858

Age

Descriptives						
			Statistic	Std. Error		
age	Mean		18.81	3.315		
	95% Confidence Interval	Lower Bound	11.98			
	for Mean	Upper Bound	25.63			
	5% Trimmed Mean		16.56			
	Median		18.00			
	Variance		285.682			
	Std. Deviation		16.902			
	Minimum		2			
	Maximum		89			
	Range		87			
	Interquartile Range		16			
	Skewness		2.946	.456		
	Kurtosis		11.971	.887		

THIS BRINGS US TO THE END OF PART I

About Me

Oluwadiya Kehinde

- Professor of Surgery at the Ekiti State University, Ado-Ekiti
- Author of "Getting to Know SPSS", the best selling book on SPSS in Nigeria
- CEO of POSK Educational
 Consult, Consultancy Firm for
 Training in Statistical and
 Health Education

www.Oluwadiya.com

Thanks for your attention

To ask questions, please join the forum at www.oluwadiya.com