Principles of fracture management

Prof Oluwadiya KS

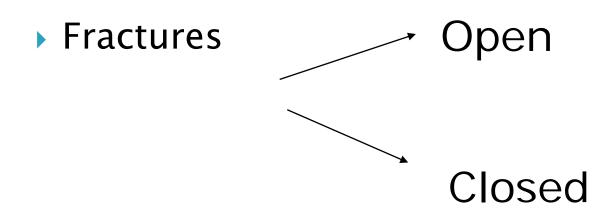
MBBS, FMCS (Orthop). MD, FACS Ekiti State University, Ado-Ekiti, Nigeria www.oluwadiya.com

Fracture

A *fracture* is a break in the continuity of bone

Dislocation

•Complete disruption of a joint such that there is no contact between the articular surfaces of the bones making up the joint


Subluxation

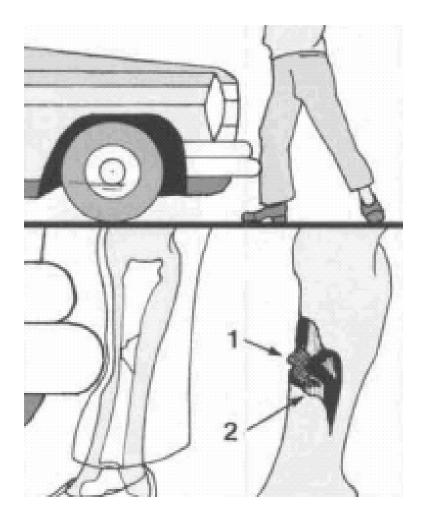
•(*sub=partial*, *luxation=dislocation*) is an incomplete disruption with the bones still retaining partial contact.

Classification

Fractures can be classified on the bases of whether the skin (or epithelium) over it is intact or not

Open Fractures

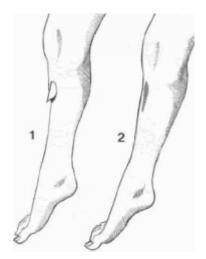
- There is a wound in continuity with the fracture or its hematoma.
- The potential exists for organism to enter the fracture site from outside.



Note:

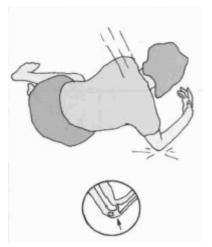
- Wound on the posterior aspect of the leg.
- Note also the deformity, the unquestionable sign of a fracture

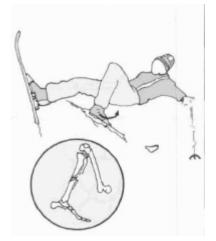
Types of open fractures


Open from without

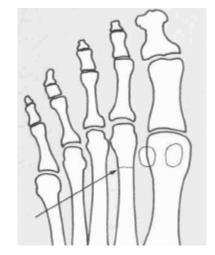
Types of open fractures

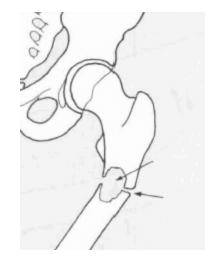
Open from within


- Sharp end of bone pierces the skin.
- Soft tissue damage is minimal, and contamination is usually not severe

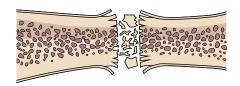

Closed fractures

> The skin over the fracture is intact.

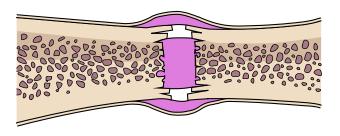

Direct violence


Indirect Violence

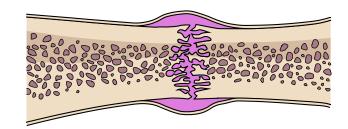
Fatigue or Stress fracture


Pathological fractures

Healing of fractures

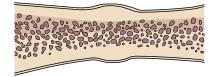

For convenience, fracture healing is divided into the following stages:

- Haematoma Formation
- Demolition



Healing of fracture (contd)

Callus Formation



Woven Bone Formation

Healing of fracture (contd)

Remodelling

Factors affecting Bone Union

• General factors:

- Malnutrition
- Immunodeficiency states
- Systemic diseases e.g. diabetis
- Local Factors
 - Poor Immobilization
 - Infection
 - Poor blood supply
 - Foreign bodies
 - Soft tissue damage
 - Part/type of the bone (cancellous versus cortical)

Duration of fracture healing

Rules of thumb:

- 1. Fractures of the lower limb takes twice as long to heal as fractures of the upper limb
- 2. Fractures in adults take twice as long to unite as fractures in children

Duration of fracture healing

	Upper Limb	Lower Limb
Children	3-4 weeks	6-8 weeks
Adults	6-8 weeks	12-16 weeks

Principle of managing fractures

- 1. Diagnosis
- 2. Reduction
- 3. Immobilization
- 4. Rehabilitation

Diagnosis: History

- Mechanism of injury
- Duration
- Site of injury
- Symptoms
- Associated injuries
- Past medical history
- Last meal
- Current medications

Diagnosis: Examination

1. General examination

- Evidence of shock
- Associated injury e.g. to head, chest etc.
- Systemic diseases that may cause pathological fractures e.g. Cushing's syndrome

Diagnosis: Examination

- 2. Local Examination: look, feel & move
- Look
- Swelling
- Wounds (Describe and estimate the size, depth and shape. Note tissues exposed)
- Deformity (The most specific sign of fracture)

Deformities

Deformity of the leg following a fracture

Elbow deformity following dislocation

Diagnosis: Examination

Feel

- Tenderness
- Distal pulses
- Test for sensations

Diagnosis: Examination

Move (Potentially painful. Be Gentle!)

- Abnormal movement
- Range of movement in distal & proximal joints
- <u>DON'T</u> deliberately check for crepitus: It is painful!

Diagnosis: X-Ray

Plain X-rays

- The most important diagnostic test.
- The following rules must be observed (*rule of 2*)
 - i. At least 2 views at right angle to each other.
 - ii. The 2 adjacent joints must be included.
 - iii. ± 2 limbs in some cases.
 - iv. ± 2 times in some cases.

Guide to Reading fracture X-rays

- Site on bone
- Fracture Line
- Displacement
- Angulation
- Other incidental findings

Reading X-rays: Site on bone

- Epiphysis
- Metaphysis
- Diaphysis
 - Upper third
 - Middle third
 - Distal third

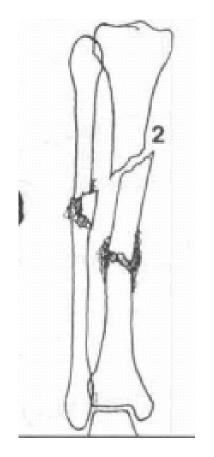
These two are usually named Eg trochanter, head, etc

Reading X-ray: Fracture lines

- Transverse
- Oblique
- Spiral
- Segmental
- Comminuted.
- Green stick

Examples of fracture lines

Spiral


Oblique

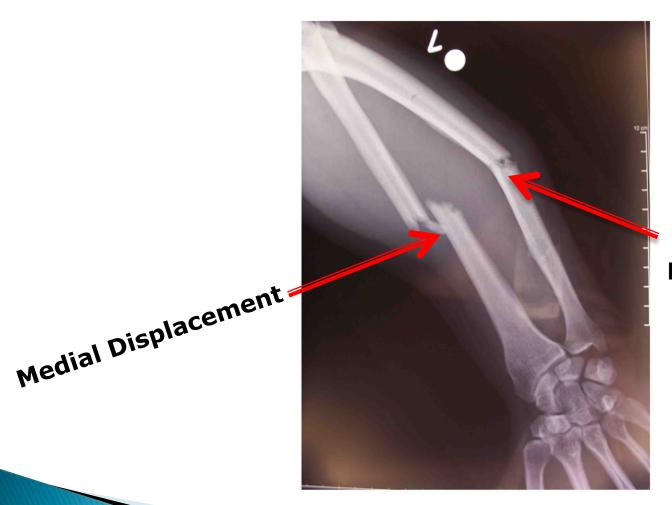
Examples of fracture lines

Comminuted

Segmental

Reading x-rays: Displacement

• Angular (Angulation)


(Medial, lateral, anterior, posterior)

Rotational

(Medial or Lateral. This usually is a clinical diagnosis)

- Shift (displacement) (Medial, lateral, anterior, posterior)
- Impaction
- Distraction

Examples of displacements

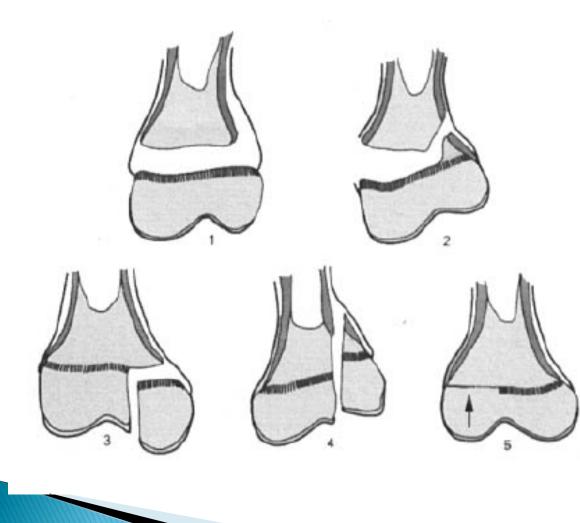
Medial Angulation

Examples of displacements

- Oblique
- Overlapping
- Angulated
- Completely displaced (Laterally)
- Midshaft fracture of the humerus

Fractures in Children (A) Shaft fractures

FRACTURES IN CHILDREN Greenstick


Complete

Buckle Pipe

Bow

Fractures in Children (A) Epiphyseal plate fractures

Classify by using Salter-Harris classification

Final Diagnosis

This is based on a combination of clinical and investigative findings

- 1. Is it open or is it close?
 - This is a clinical decision
- 2. Site (X-ray)
 - Which bone?
 - Site on bone
 - Fracture line
 - Fracture displacement
- 3. Underline disease? (Combination of the two)

Pathological fracture

 Osteoporosis
Comminuted fractures of the surgical neck of the humerus
Some impaction

General management

- First aid
- Transport
- Shock and haemorrhage
- Pain
- Associated injuries
- Prophylaxis against tetanus when indicated.
- Antibiotics when indicated.

Reduction

- This is the restoration of the (displaced) fractured bone to its normal anatomical alignment.
- Not necessary when fractures are undisplaced (e.g. greenstick, stress fractures)
- Inaccurate reductions lead to mal-union

Reduction: Methods

- Gravity
- Closed reduction or Manipulation under anaesthesia (MUA)
- Open reduction

Closed reduction

- The ideal method of reduction
- Must be done under anaesthesia
 - General
 - Regional
 - Sedation and analgesia
 - Haematoma block occasionally

Close reduction

- Based on the principle of reversing the (direction of) the force that caused the fracture
- X-ray film must be at hand
- Most entails dis-impacting the fracture fragments by manual traction, followed by manipulation

Open reduction

- A surgical operation in which the fracture site is exposed in other to reduce the fracture. Usually done in conjunction with Internal fixation (Hence the acronym: ORIF)
- Have specific indications

Open reduction: Indications

- Close reduction is impossible
 - 1. Small fragment, cannot be manipulated
 - 2. Loose fragment in the joint
 - 3. Certain forearm fractures-dislocations
- Close reduction is inaccurate
 - 1. Displaced articular fractures
 - 2. Displaced fractures of both forearm bones
- Internal fixation is indicated

Immobilization (Fixation)

- Methods by which reductions are held in place.
- An essential step to fracture union
- Inadequate immobilizations lead to nonunion
- Also referred to as splinting or fixation.

Immobilizations

External

- Casts
- External fixators
- Tractions
- Strapping (useful in the upper limb)
- Cast-braces

Internal

- Screws
- Plates and screws
- Nails
- Wires and Pins

Casts

Types

- i. POP
- ii. Fibre-glass casts
- Application mode
 - i. Complete Casts
 - ii. Back Slabs

Casts

BACK SLAB

General rules of cast application

- Always protect the underline skin by padding the cast. (velban, Sofban, stockinet)
- For adequate immobilization, the joint above and the joint below the fractured bone should be included in the cast (Except in some cases)
- Never apply a complete cast on a freshly fractured limb

POP Advantages

- It is cheap.
- It is easily available and
- It is safe and easily applied.

POP: Disadvantages

- It is heavy
- It is easily spoilt by water.
- It is relatively radio-opaque.
- Wounds are not easily accessible in casts.
- Joint stiffness is common
- Impaired blood flow may lead to ischaemia and Volkmann ischaemic contracture

Fibre Glass casts

- More rigid than POP
- Lighter
- Comes in different colours
- Water resistant
- More difficult to apply than POP
- More Expensive too

Tractions

- Pulling force is applied to the skeleton
- counterbalanced by a counter-traction

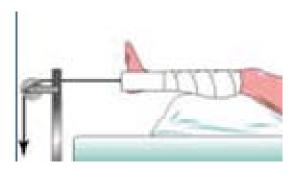
Tractions

Question

How much weight to use for femoral traction?

Answer

10% of the patient's body weight


Traction

Types of tractions

- Skin Tractions
- Skeletal Tractions

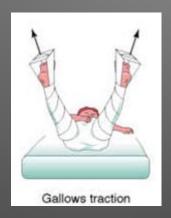
Skin tractions

- Adhesive or non-adhesive tape applied to the leg or the forearm with weight attached.
- Cannot take more than 5Kg; therefore
 - Can be used for definitive immobilization in children BUT
 - Can only be used for temporary immobilization in adults

Skeletal tractions

- A pin or wire is passed through the skeleton distal to the fracture and weights are attached to this to provide traction
- Can support much more weight than skin traction
- Commonest site of insertion is the upper tibia for femoral fractures

Tractions


Mode of Application

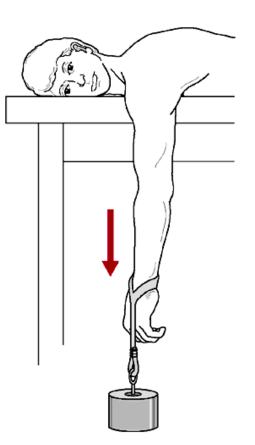
- Fixed traction
- Balanced or sliding traction
- Combined traction
- Gallows Traction

Example of Traction types

Gallow's Traction

- Used in Children<2yrs</p>
- Can be taken home
- For femoral fractures

Example of Traction types


- Balanced Traction
- With foot of bed elevated, Patient's weight provides counter-traction

Traction

Examples of tractions

Fixed traction

Complications of tractions

- Pin site infection (Skeletal traction)
- Distraction leads to non-union or delayed union (Too much weight)
- Insufficient traction: Overlapping fragments. Leads to malunion
- Reaction to skin traction kit (Zinc oxide)
- Common peroneal nerve injury especially in the elderly

External Fixation

- Bone fragments are held in alignment with pins inserted percutaneously
- The pins are then held in proper relation to one another by a rigid external frame.
- Major indication is open fractures with large wounds

External fixation

Strappings

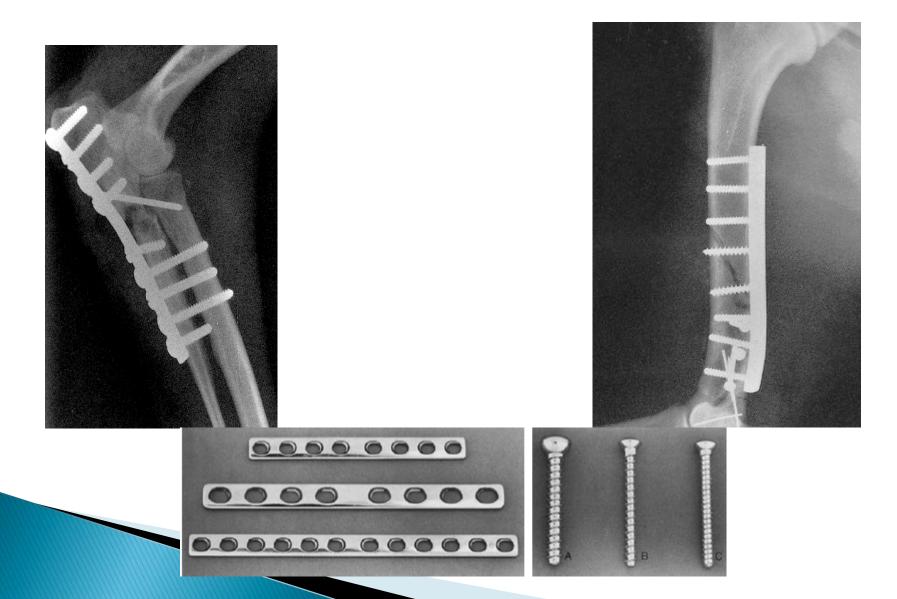
 Very useful in the upper limb

Cast-Braces

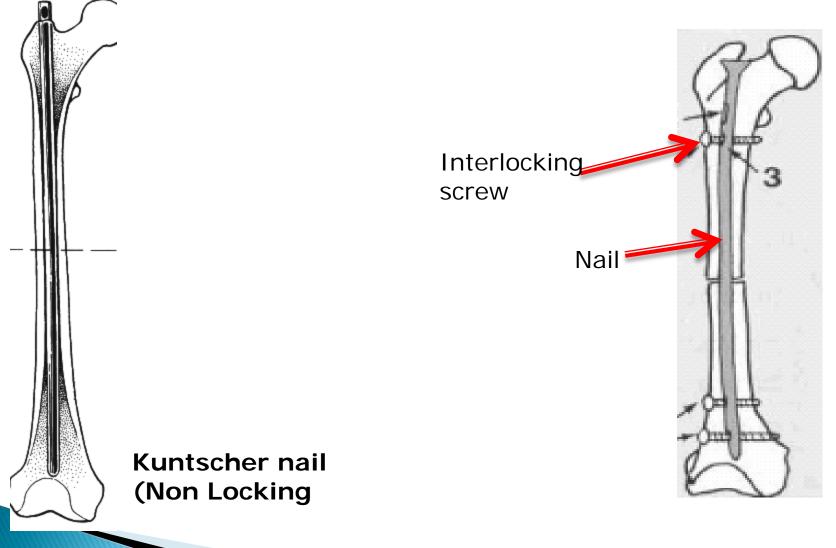
Useful for managing humeral fractures

Internal fixation: Indications

- i. Difficult fractures
- Pathological fractures secondary to tumours: to facilitate patient's early mobilisation
- iii. Multiple fractures especially in one limb
- Nursing difficulties e.g. quadriplegics or paraplegics and those with multiple injuries.
- In cases where prolonged hospitalisation is undesirable e.g. elderly patients.


Examples of difficult fractures

- i. Those prone to non-union e.g. femoral neck fractures
- ii. Those prone to malunion e.g. ankle and wrist fractures
- iii. Those prone to distraction e.g. patella and olecranial fractures.


Type of Internal splints

- Plates and screws.
- Intramedullary nails e.g. Kuntscher nails.
- Wires e.g. Kirchner wires.
- Screws alone

Plates and Screws

Intramedullary Nail

Locked Intramedullary Nail

Complications of internal fixations

- Infections: the most feared complication!
- Implant failure.
- Refracture after implant removal.
- Implant migration.

Open fracture treatment

Main worry is INFECTION!

- Tetanus immunoprophylaxis
- Debridement
- ± Immediate Closure
- ± Daily dressing
- $\bullet \pm POP + windows$
- ± External fixation
- ▶ ± ORIF

Signs of Union

- Absent movement and pain at fracture site
- Palpable callus
- Can raise limb up
- Good Callus formation on x-ray
- Fracture line has disappeared on Xray

General complications

- Shock and haemorrhage
- Tetanus
- Fat embolism
- Pulmonary embolism

Skin

- Fracture blisters
- Plaster sores
- Bed sores
- Reaction to skin traction

Muscles

- Muscle atrophy
- Muscle weakness
- Muscle tear

Tendons

- Avulsion
- Rupture (usually late)
- Tendonitis

Nerves

- Neuropraxia
- Axonotmesis
- Neurotmesis
- Nerve entrapment syndrome. Usually delayed

Vascular

- Direct injury to vessels
- Compression of vessels
- Vascular spasm
- Compartmental syndrome
- Volksmann ischemic contractures

Bone

- Avascular necrosis
- Non–union
- Malunion
- Delayed union
- Growth disturbances in the skeletally immature.
- Osteomyelitis

Joints.

- Stiffness
- Recurrent dislocations
- Osteoarthritis
- Haemathrosis.

Miscellaneous

- Myositis ossificans
- Sudeck's atrophy

Non-union and malunion

<u>Non-Union</u>

MalUnion

Thank you